Open DDH

Upcoming talks

April 2, 2019

Learning-based vertebra segmentation, identification and partitioning

Nikolas Lessmann

Nikolas Lessmann.jpg

Abstract: The spine is visualized on many CT and MR exams, including thorax and abdomen scans that were originally not intended for spine imaging. Because these often cover several but not all vertebrae, it is difficult to make strong assumptions for automatic analysis. Challenges are therefore the unknown number of target structures (vertebrae) in the image, their anatomical identification (which vertebrae are visible? must not assign the same label to two vertebrae) and that some biomarkers are related only to part of the vertebrae, often the vertebral body. This talk covers an instance segmentation approach for vertebra detection, segmentation, and anatomical identification, and a partitioning approach to separate vertebral body and arch based on thin-plate spline surfaces positioned by a convolutional neural network.


March 6, 2019

Inverse problems in medical imaging

Nikita Moriakov

Nikita Moriakov.jpg

Abstract: Inverse problem is the type of problems in natural sciences when one has to infer from a set of observations the causal factors that produced them. In medical imaging, important examples of inverse problems would be reconstruction in CT and MRI, where the volumetric representation of an object is computed from the projection and Fourier space data respectively. In a classical approach, one relies on domain specific knowledge contained in physical-analytical models to develop a reconstruction algorithm, which is often given by a certain iterative refinement procedure. Recent research in inverse problems seeks to develop a mathematically coherent foundation for combining data driven models, based on deep learning, with the analytical knowledge contained in the classical reconstruction procedures. In this talk we will give a brief overview of these developments and then focus on particular applications in Digital Breast Tomosynthesis and MRI reconstruction.

View slides.