The language of radiology has gradually evolved from "the film" (the foundation of radiology since Wilhelm Roentgen's 1895 discovery of x-rays) to "the image," an electronic manifestation of a radiologic examination that exists within the bits and bytes of a computer. Rather than simply storing and displaying radiologic images in a static manner, the computational power of the computer may be used to enhance a radiologist's ability to visually extract information from the image through image processing and image manipulation algorithms. Image processing tools provide a broad spectrum of opportunities for image enhancement. Gray-level manipulations such as histogram equalization, spatial alterations such as geometric distortion correction, preprocessing operations such as edge enhancement, and enhanced radiography techniques such as temporal subtraction provide powerful methods to improve the diagnostic quality of an image or to enhance structures of interest within an image. Furthermore, these image processing algorithms provide the building blocks of more advanced computer vision methods. The prominent role of medical physicists and the AAPM in the advancement of medical image processing methods, and in the establishment of the "image" as the fundamental entity in radiology and radiation oncology, has been captured in 35 volumes of Medical Physics.
Anniversary paper: image processing and manipulation through the pages of Medical Physics
S. Armato and B. van Ginneken
Medical Physics 2008;35(10):4488-4500.