Since more than 50 years texture in image material is a topic of research. Hereby, color was ignored mostly. This study compares 70 different configurations for texture analysis, using four features. For the configurations we used: (i) a gray value texture descriptor: the co-occurrence matrix and a color texture descriptor: the color correlogram, (ii) six color spaces, and (iii) several quantization schemes. A three classifier combination was used to classify the output of the configurations on the VisTex texture database. The results indicate that the use of a coarse HSV color space quantization can substantially improve texture recognition compared to various other gray and color quantization schemes.
Evaluation of color representation for texture analysis
E. van den Broek and E. van Rikxoort
Proceedings of the 16th Belgian Dutch Artificial Intelligence Conference (BNAIC) 2004:35-42.