Publications of Colin Jacobs
2023
Papers in international journals
- W. Hendrix, N. Hendrix, E. Scholten, M. Mourits, J. Trap-de Jong, S. Schalekamp, M. Korst, M. van Leuken, B. van Ginneken, M. Prokop, M. Rutten and C. Jacobs, "Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans", Communications Medicine, 2023;3(1):156.
- N. Alves, J.S. Bosma, K. Venkadesh, C. Jacobs, Z. Saghir, M. de Rooij, J. Hermans and H. Huisman, "Prediction Variability to Identify Reduced AI Performance in Cancer Diagnosis at MRI and CT", Radiology, 2023;308(3):e230275.
- C. Jacobs, "Challenges and outlook in the management of pulmonary nodules detected on CT", European Radiology, 2023;34:247-249.
- K. Venkadesh, T. Aleef, E. Scholten, Z. Saghir, M. Silva, N. Sverzellati, U. Pastorino, B. van Ginneken, M. Prokop and C. Jacobs, "Prior CT Improves Deep Learning for Malignancy Risk Estimation of Screening-detected Pulmonary Nodules", Radiology, 2023;308(2):e223308.
- W. Hendrix, M. Rutten, N. Hendrix, B. van Ginneken, C. Schaefer-Prokop, E. Scholten, M. Prokop and C. Jacobs, "Trends in the incidence of pulmonary nodules in chest computed tomography: 10-year results from two Dutch hospitals", European Radiology, 2023;33:8279-8288.
- G. Sidorenkov, R. Stadhouders, C. Jacobs, F. Mohamed Hoesein, H. Gietema, K. Nackaerts, Z. Saghir, M. Heuvelmans, H. Donker, J. Aerts, R. Vermeulen, A. Uitterlinden, V. Lenters, J. van Rooij, C. Schaefer-Prokop, H. Groen, P. de Jong, R. Cornelissen, M. Prokop, G. de Bock and R. Vliegenthart, "Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial.", European journal of epidemiology, 2023;38(4):445-454.
- W. Xie, C. Jacobs, J. Charbonnier and B. van Ginneken, "Dense regression activation maps for lesion segmentation in CT scans of COVID-19 patients", Medical Image Analysis, 2023;86:102771.
- W. Xie, C. Jacobs, J. Charbonnier, D. Slebos and B. van Ginneken, "Emphysema subtyping on thoracic computed tomography scans using deep neural networks", Scientific Reports, 2023;13:14147.
Preprints
- G. Humpire-Mamani, C. Jacobs, M. Prokop, B. van Ginneken and N. Lessmann, "Transfer learning from a sparsely annotated dataset of 3D medical images", arXiv:2311.05032, 2023.
- G. Mamani, N. Lessmann, E. Scholten, M. Prokop, C. Jacobs and B. van Ginneken, "Kidney abnormality segmentation in thorax-abdomen CT scans", arXiv:2309.03383, 2023.
Papers in conference proceedings
- J.S. Bosma, D. Peeters, N. Alves, A. Saha, Z. Saghir, C. Jacobs and H. Huisman, "Reproducibility of Training Deep Learning Models for Medical Image Analysis", Medical Imaging with Deep Learning, 2023.
Abstracts
- N. Antonissen, K. Venkadesh, H. Gietema, R. Vliegenthart, Z. Saghir, M. Silva, E. Pastorino, E. Scholten, M. Prokop, C. Schaefer-Prokop and C. Jacobs, "Retrospective identification of low-risk individuals eligible for biennial lung cancer screening using PanCan-based and deep learning-based risk thresholds", Annual Meeting of the European Society of Thoracic Imaging, 2023.
- N. Antonissen, K. Venkadesh, H. Gietema, R. Vliegenthart, Z. Saghir, E. Scholten, M. Prokop, C. Schaefer-Prokop and C. Jacobs, "Retrospective validation of nodule management based on deep learning-based malignancy thresholds in lung cancer screening", European Congress of Radiology, 2023.
- D. Peeters, N. Alves, K. Venkadesh, R. Dinnessen, Z. Saghir, E. Scholten, H. Huisman, C. Schaefer-Prokop, R. Vliegenthart, M. Prokop and C. Jacobs, "The effect of applying an uncertainty estimation method on the performance of a deep learning model for nodule malignancy risk estimation", European Congress of Radiology, 2023.
PhD theses
- W. Xie, "Deep Learning for Treatment Planning in Chronic Obstructive Pulmonary Diseases", PhD thesis, 2023.
Master theses
- R. Geurtjens, D. Peeters and C. Jacobs, "Self-supervised Out-of-Distribution detection for medical imaging", Master thesis, 2023.
- S. Vyawahare, K. Venkadesh and C. Jacobs, "Automated segmentation of subsolid pulmonary nodules in CT scans using deep learning", Master thesis, 2023.