Abstract. Breast MRI to X-ray mammography registration using patient-specific biomechanical models is one challenging task in medical imaging. To solve this problem, the accurate knowledge about internal and external factors of the breast, such as internal tissues distribution, is needed for modelling a suitable physical behavior. In this work, we compare four different tissue segmentation algorithms, two intensity-based segmentation algorithms (Fuzzy C-means and Gaussian mixture model) and two improvements that incorporate spatial information (Kernelized Fuzzy C-means and Markov Random Fields, respectively), and analyze their effect to the multi-modal registration. The overall framework consists on using a density estimation software (VolparaTM) to extract the glandular tissue from full-field digital mammograms, meanwhile, a biomechanical model is used to mimic the mammographic acquisition from the MRI, computing the glandular tissue traversed by the X-ray beam. Results with 40 patients show a high agreement between the amount of glandular tissue computed for each method.
Comparison of Four Breast Tissue Segmentation Algorithms for Multi-modal MRI to X-ray Mammography Registration
E. García, A. Oliver, Y. Diez, O. Diaz, A. Gubern-Mérida, X. Lladó and J. Martí
Breast Imaging 2016;9699:493-500.