Publications of Geert Litjens
2019
Papers in international journals
- P. Bándi, M. Balkenhol, B. van Ginneken, J. van der Laak and G. Litjens, "Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks", PeerJ, 2019;7:e8242.
- O. Debats, G. Litjens and H. Huisman, "Lymph node detection in MR Lymphography: false positive reduction using multi-view convolutional neural networks", PeerJ, 2019;7:e8052.
- J. van der Laak, F. Ciompi and G. Litjens, "No pixel-level annotations needed", Nature Biomedical Engineering, 2019;3(11):855-856.
- Z. Swiderska-Chadaj, H. Pinckaers, M. van Rijthoven, M. Balkenhol, M. Melnikova, O. Geessink, Q. Manson, M. Sherman, A. Polonia, J. Parry, M. Abubakar, G. Litjens, J. van der Laak and F. Ciompi, "Learning to detect lymphocytes in immunohistochemistry with deep learning", Medical Image Analysis, 2019;58:101547.
- D. Tellez, G. Litjens, P. Bándi, W. Bulten, J. Bokhorst, F. Ciompi and J. van der Laak, "Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology", Medical Image Analysis, 2019;58:101544.
- G. Litjens, F. Ciompi, J. Wolterink, B. de Vos, T. Leiner, J. Teuwen and I. Isgum, "State-of-the-Art Deep Learning in Cardiovascular Image Analysis", JACC Cardiovascular Imaging, 2019;12(8 Pt 1):1549-1565.
- L. Aprupe, G. Litjens, T. Brinker, J. van der Laak and N. Grabe, "Robust and accurate quantification of biomarkers of immune cells in lung cancer micro-environment using deep convolutional neural networks", PeerJ, 2019;7:e6335.
- M. Maas, G. Litjens, A. Wright, U. Attenberger, M. Haider, T. Helbich, B. Kiefer, K. Macura, D. Margolis, A. Padhani, K. Selnaes, G. Villeirs, J. Futterer and T. Scheenen, "A Single-Arm, Multicenter Validation Study of Prostate Cancer Localization and Aggressiveness With a Quantitative Multiparametric Magnetic Resonance Imaging Approach", Investigative Radiology, 2019.
- O. Geessink, A. Baidoshvili, J. Klaase, B. Ehteshami Bejnordi, G. Litjens, G. van Pelt, W. Mesker, I. Nagtegaal, F. Ciompi and J. van der Laak, "Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer", Cellular Oncology, 2019:1-11.
- W. Bulten, P. Bándi, J. Hoven, R. van de Loo, J. Lotz, N. Weiss, J. van der Laak, B. van Ginneken, C. Hulsbergen-van de Kaa and G. Litjens, "Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard", Scientific Reports, 2019;9(1).
Preprints
- H. Pinckaers and G. Litjens, "Neural Ordinary Differential Equations for Semantic Segmentation of Individual Colon Glands", arXiv:1910.10470, 2019.
- A. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani, B. van Ginneken, A. Kopp-Schneider, B. Landman, G. Litjens, B. Menze, O. Ronneberger, R. Summers, P. Bilic, P. Christ, R. Do, M. Gollub, J. Golia-Pernicka, S. Heckers, W. Jarnagin, M. McHugo, S. Napel, E. Vorontsov, L. Maier-Hein and M. Cardoso, "A large annotated medical image dataset for the development and evaluation of segmentation algorithms", arXiv:1902.09063, 2019.
Papers in conference proceedings
- T. de Bel, M. Hermsen, J. Kers, J. van der Laak and G. Litjens, "Stain-Transforming Cycle-Consistent Generative Adversarial Networks for Improved Segmentation of Renal Histopathology", Medical Imaging with Deep Learning, 2019.
- K. Dercksen, W. Bulten and G. Litjens, "Dealing with Label Scarcity in Computational Pathology: A Use Case in Prostate Cancer Classification", Medical Imaging with Deep Learning, 2019.
- H. Pinckaers, W. Bulten and G. Litjens, "High resolution whole prostate biopsy classification using streaming stochastic gradient descent", Medical Imaging, 2019(1).
Abstracts
- W. Bulten, H. Pinckaers, C. Hulsbergen-van de Kaa and G. Litjens, "Automated Gleason Grading of Prostate Biopsies Using Deep Learning", United States and Canadian Academy of Pathology (USCAP) 108th Annual Meeting, 2019.