When reading mammograms, radiologists do not only look at local properties of suspicious regions but also take into account more general contextual information. This suggests that context may be used to improve the performance of computer-aided detection (CAD) of malignant masses in mammograms. In this study, we developed a set of context features that represent suspiciousness of normal tissue in the same case. For each candidate mass region, three normal reference areas were defined in the image at hand. Corresponding areas were also defined in the contralateral image and in different projections. Evaluation of the context features was done using 10-fold cross validation and case based bootstrapping. Free response receiver operating characteristic (FROC) curves were computed for feature sets including context features and a feature set without context. Results show that the mean sensitivity in the interval of 0.05-0.5 false positives/image increased more than 6\% when context features were added. This increase was significant ( p < 0.0001). Context computed using multiple views yielded a better performance than using a single view (mean sensitivity increase of 2.9\%, p < 0.0001). Besides the importance of using multiple views, results show that best CAD performance was obtained when multiple context features were combined that are based on different reference areas in the mammogram.
Use of normal tissue context in computer-aided detection of masses in mammograms
R. Hupse and N. Karssemeijer
IEEE Transactions on Medical Imaging 2009;28(12):2033-2041.