Publications of Jeroen van der Laak
2021
Papers in international journals
- M. Yousif, P. van Diest, A. Laurinavicius, D. Rimm, J. van der Laak, A. Madabhushi, S. Schnitt and L. Pantanowitz, "Artificial intelligence applied to breast pathology", Virchows Archiv, 2021;480:191-209.
- J. Rutgers, T. Bánki, A. van der Kamp, T. Waterlander, M. Scheijde-Vermeulen, M. van den Heuvel-Eibrink, J. van der Laak, M. Fiocco, A. Mavinkurve-Groothuis and R. de Krijger, "Interobserver variability between experienced and inexperienced observers in the histopathological analysis of Wilms tumors: a pilot study for future algorithmic approach", Diagnostic Pathology, 2021;16.
- J. Slaats, C. Dieteren, E. Wagena, L. Wolf, T. Raaijmakers, J. van der Laak, C. Figdor, B. Weigelin and P. Friedl, "Metabolic Screening of Cytotoxic T-cell Effector Function Reveals the Role of CRAC Channels in Regulating Lethal Hit Delivery", Cancer Immunology Research, 2021;9:926-938.
- M. Hermsen, V. Volk, J. Brasen, D. Geijs, W. Gwinner, J. Kers, J. Linmans, N. Schaadt, J. Schmitz, E. Steenbergen, Z. Swiderska-Chadaj, B. Smeets, L. Hilbrands and J. van der Laak, "Quantitative assessment of inflammatory infiltrates in kidney transplant biopsies using multiplex tyramide signal amplification and deep learning", Laboratory Investigation, 2021;101(8):970-982.
- J. van der Laak, G. Litjens and F. Ciompi, "Deep learning in histopathology: the path to the clinic.", Nature Medicine, 2021;27(5):775-784.
- T. Haddad, A. Lugli, S. Aherne, V. Barresi, B. Terris, J. Bokhorst, S. Brockmoeller, M. Cuatrecasas, F. Simmer, H. El-Zimaity, J. Fléjou, D. Gibbons, G. Cathomas, R. Kirsch, T. Kuhlmann, C. Langner, M. Loughrey, R. Riddell, A. Ristimäki, S. Kakar, K. Sheahan, D. Treanor, J. van der Laak, M. Vieth, I. Zlobec and I. Nagtegaal, "Improving tumor budding reporting in colorectal cancer: a Delphi consensus study", Virchows Archiv, 2021;479:459-469.
- T. de Bel, J. Bokhorst, J. van der Laak and G. Litjens, "Residual cyclegan for robust domain transformation of histopathological tissue slides.", Medical Image Analysis, 2021;70:102004.
- M. Balkenhol, F. Ciompi, Z. Swiderska-Chadaj, R. van de Loo, M. Intezar, I. Otte-Holler, D. Geijs, J. Lotz, N. Weiss, T. de Bel, G. Litjens, P. Bult and J. van der Laak, "Optimized tumour infiltrating lymphocyte assessment for triple negative breast cancer prognostics.", The Breast, 2021;56:78-87.
- M. van Rijthoven, M. Balkenhol, K. Silina, J. van der Laak and F. Ciompi, "HookNet: Multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images", Medical Image Analysis, 2021;68:101890.
- D. Tellez, G. Litjens, J. van der Laak and F. Ciompi, "Neural Image Compression for Gigapixel Histopathology Image Analysis.", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021;43(2):567-578.
- J. Bogaerts, M. Steenbeek, M. van Bommel, J. Bulten, J. van der Laak, J. de Hullu and M. Simons, "Recommendations for diagnosing STIC: a systematic review and meta-analysis", 2021;480(4):725-737.
- F. Ciompi, M. Veta, J. van der Laak and N. Rajpoot, "Editorial Computational Pathology", IEEE} Journal of Biomedical and Health Informatics, 2021;25(2):303-306.
- N. Marini, S. Otálora, D. Podareanu, M. van Rijthoven, J. van der Laak, F. Ciompi, H. Muller and M. Atzori, "Multi_Scale_Tools: A Python Library to Exploit Multi-Scale Whole Slide Images", Frontiers in Computer Science, 2021;3.
Preprints
- J. Lotz, N. Weiss, J. van der Laak and S. Heldmann, "Comparison of Consecutive and Re-stained Sections for Image Registration in Histopathology", arXiv:2106.13150, 2021.
- J. Bokhorst, I. Nagtegaal, F. Fraggetta, S. Vatrano, W. Mesker, M. Vieth, J. van der Laak and F. Ciompi, "Automated risk classification of colon biopsies based on semantic segmentation of histopathology images", arXiv:2109.07892, 2021.
Papers in conference proceedings
- W. Aswolinskiy, D. Tellez, G. Raya, L. van der Woude, M. Looijen-Salamon, J. van der Laak, K. Grunberg and F. Ciompi, "Neural image compression for non-small cell lung cancer subtype classification in H&E stained whole-slide images", Medical Imaging 2021: Digital Pathology, 2021;11603:1 - 7.
- M. van Rijthoven, M. Balkenhol, M. Atzori, P. Bult, J. van der Laak and F. Ciompi, "Few-shot weakly supervised detection and retrieval in histopathology whole-slide images", Medical Imaging, 2021;11603:137 - 143.
- K. Faryna, J. van der Laak and G. Litjens, "Tailoring automated data augmentation to H&E-stained histopathology", Medical Imaging with Deep Learning, 2021.
- G. Smit, F. Ciompi, M. Cigéhn, A. Bodén, J. van der Laak and C. Mercan, "Quality control of whole-slide images through multi-class semantic segmentation of artifacts", Medical Imaging with Deep Learning, 2021.
PhD theses
- D. Tellez, "Advancing computational pathology with deep learning: from patches to gigapixel image-level classification", PhD thesis, 2021.