Abstract
Objectives
To evaluate if artificial intelligence (AI) can discriminate recalled benign from recalled malignant mammographic screening abnormalities to improve screening performance.
Methods
A total of 2257 full-field digital mammography screening examinations, obtained 2011-2013, of women aged 50-69 years which were recalled for further assessment of 295 malignant out of 305 truly malignant lesions and 2289 benign lesions after independent double-reading with arbitration, were included in this retrospective study. A deep learning AI system was used to obtain a score (0-95) for each recalled lesion, representing the likelihood of breast cancer. The sensitivity on the lesion level and the proportion of women without false-positive ratings (non-FPR) resulting under AI were estimated as a function of the classification cutoff and compared to that of human readers.
Results
Using a cutoff of 1, AI decreased the proportion of women with false-positives from 89.9 to 62.0%, non-FPR 11.1% vs. 38.0% (difference 26.9%, 95% confidence interval 25.1-28.8%; p < .001), preventing 30.1% of reader-induced false-positive recalls, while reducing sensitivity from 96.7 to 91.1% (5.6%, 3.1-8.0%) as compared to human reading. The positive predictive value of recall (PPV-1) increased from 12.8 to 16.5% (3.7%, 3.5-4.0%). In women with mass-related lesions (n = 900), the non-FPR was 14.2% for humans vs. 36.7% for AI (22.4%, 19.8-25.3%) at a sensitivity of 98.5% vs. 97.1% (1.5%, 0-3.5%).
Conclusion
The application of AI during consensus conference might especially help readers to reduce false-positive recalls of masses at the expense of a small sensitivity reduction. Prospective studies are needed to further evaluate the screening benefit of AI in practice.
Key Points
-
Integrating the use of artificial intelligence in the arbitration process reduces benign recalls and increases the positive predictive value of recall at the expense of some sensitivity loss.
-
Application of the artificial intelligence system to aid the decision to recall a woman seems particularly beneficial for masses, where the system reaches comparable sensitivity to that of the readers, but with considerably reduced false-positives.
-
About one-fourth of all recalled malignant lesions are not automatically marked by the system such that their evaluation (AI score) must be retrieved manually by the reader. A thorough reading of screening mammograms by readers to identify suspicious lesions therefore remains mandatory.