Publications of Kiran Vaidhya Venkadesh

Papers in international journals

  1. D. Peeters, N. Alves, K. Venkadesh, R. Dinnessen, Z. Saghir, E. Scholten, C. Schaefer-Prokop, R. Vliegenthart, M. Prokop and C. Jacobs, "Enhancing a deep learning model for pulmonary nodule malignancy risk estimation in chest CT with uncertainty estimation", European Radiology, 2024.
    Abstract DOI PMID
  2. C. Ferreira, K. Venkadesh, C. Jacobs, M. Coimbra and A. Campilho, "Towards automatic forecasting of lung nodule diameter with tabular data and CT imaging", Biomedical Signal Processing and Control, 2024;96:106625.
    Abstract DOI
  3. N. Alves, J.S. Bosma, K. Venkadesh, C. Jacobs, Z. Saghir, M. de Rooij, J. Hermans and H. Huisman, "Prediction Variability to Identify Reduced AI Performance in Cancer Diagnosis at MRI and CT", Radiology, 2023;308(3):e230275.
    Abstract DOI PMID Cited by ~6
  4. K. Venkadesh, T. Aleef, E. Scholten, Z. Saghir, M. Silva, N. Sverzellati, U. Pastorino, B. van Ginneken, M. Prokop and C. Jacobs, "Prior CT Improves Deep Learning for Malignancy Risk Estimation of Screening-detected Pulmonary Nodules", Radiology, 2023;308(2):e223308.
    Abstract DOI PMID Algorithm Cited by ~3
  5. C. de Vente, L. Boulogne, K. Venkadesh, C. Sital, N. Lessmann, C. Jacobs, C. Sánchez and B. van Ginneken, "Automated COVID-19 Grading with Convolutional Neural Networks in Computed Tomography Scans: A Systematic Comparison", IEEE Transactions on Artificial Intelligence, 2022;3(2):129-138.
    Abstract DOI PMID Download Cited by ~19
  6. K. Venkadesh, A. Setio, A. Schreuder, E. Scholten, K. Chung, M. W Wille, Z. Saghir, B. van Ginneken, M. Prokop and C. Jacobs, "Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT.", Radiology, 2021;300(2):438-447.
    Abstract DOI PMID Algorithm Cited by ~64
  7. N. Lessmann, C. Sánchez, L. Beenen, L. Boulogne, M. Brink, E. Calli, J. Charbonnier, T. Dofferhoff, W. van Everdingen, P. Gerke, B. Geurts, H. Gietema, M. Groeneveld, L. van Harten, N. Hendrix, W. Hendrix, H. Huisman, I. Isgum, C. Jacobs, R. Kluge, M. Kok, J. Krdzalic, B. Lassen-Schmidt, K. van Leeuwen, J. Meakin, M. Overkamp, T. van Rees Vellinga, E. van Rikxoort, R. Samperna, C. Schaefer-Prokop, S. Schalekamp, E. Scholten, C. Sital, L. Stöger, J. Teuwen, K. Vaidhya Venkadesh, C. de Vente, M. Vermaat, W. Xie, B. de Wilde, M. Prokop and B. van Ginneken, "Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence", Radiology, 2021;298(1):E18-E28.
    Abstract DOI PMID Algorithm Download Cited by ~112

Abstracts

  1. N. Antonissen, K. Venkadesh, H. Gietema, R. Vliegenthart, Z. Saghir, E. Scholten, M. Prokop, C. Schaefer-Prokop and C. Jacobs, "Retrospective validation and comparison of deep learning based risk thresholds versus growth-centric protocols in pulmonary nodule assessment in screening", Annual Meeting of the European Society of Thoracic Imaging, 2024.
    Abstract
  2. B. Obreja, K. Venkadesh, W. Hendrix, Z. Saghir, M. Prokop and C. Jacobs, "Deep Learning for estimating pulmonary nodule malignancy risk: How much data does AI need to reach radiologist level performance?", European Congress of Radiology, 2024.
    Abstract
  3. R. Dinnessen, K. Venkadesh, D. Peeters, H. Gietema, E. Scholten, C. Schaefer-Prokop and C. Jacobs, "External validation of an AI algorithm for pulmonary nodule malignancy risk estimation on a dataset of incidentally detected pulmonary nodules", European Congress of Radiology, 2024.
    Abstract
  4. D. Peeters, K. Venkadesh, R. Dinnessen, Z. Saghir, E. Scholten, R. Vliegenthart, M. Prokop and C. Jacobs, "Towards safe and reliable implementation of AI models for nodule malignancy estimation using distance-based out-of-distribution detection", Annual Meeting of the European Society of Thoracic Imaging, 2024.
    Abstract
  5. N. Antonissen, K. Venkadesh, H. Gietema, R. Vliegenthart, Z. Saghir, E. Scholten, M. Prokop, C. Schaefer-Prokop and C. Jacobs, "Retrospective validation of nodule management based on deep learning-based malignancy thresholds in lung cancer screening", European Congress of Radiology, 2023.
    Abstract
  6. D. Peeters, N. Alves, K. Venkadesh, R. Dinnessen, Z. Saghir, E. Scholten, H. Huisman, C. Schaefer-Prokop, R. Vliegenthart, M. Prokop and C. Jacobs, "The effect of applying an uncertainty estimation method on the performance of a deep learning model for nodule malignancy risk estimation", European Congress of Radiology, 2023.
    Abstract
  7. N. Antonissen, K. Venkadesh, H. Gietema, R. Vliegenthart, Z. Saghir, M. Silva, E. Pastorino, E. Scholten, M. Prokop, C. Schaefer-Prokop and C. Jacobs, "Retrospective identification of low-risk individuals eligible for biennial lung cancer screening using PanCan-based and deep learning-based risk thresholds", Annual Meeting of the European Society of Thoracic Imaging, 2023.
    Abstract
  8. K. Venkadesh, T. Aleef, A. Schreuder, E. Scholten, B. van Ginneken, M. Prokop and C. Jacobs, "Deep learning for estimating pulmonary nodule malignancy risk using prior CT examinations in lung cancer screening", European Congress of Radiology, 2022.
    Abstract
  9. K. Venkadesh, A. Schreuder, E. Scholten, S. Atkar-Khattra, J. Mayo, Z. Saghir, M. Wille, B. van Ginneken, S. Lam, M. Prokop and C. Jacobs, "Integration Of A Deep Learning Algorithm Into The Clinically Established PanCan Model For Malignancy Risk Estimation Of Screen-detected Pulmonary Nodules In First Screening CT", Annual Meeting of the Radiological Society of North America, 2021.
    Abstract
  10. K. Venkadesh, A. Setio, Z. Saghir, B. van Ginneken and C. Jacobs, "Deep Learning for Lung Nodule Malignancy Prediction: Comparison With Clinicians and the Brock Model on an Independent Dataset From a Large Lung Screening Trial", Annual Meeting of the Radiological Society of North America, 2020.
    Abstract

PhD theses

  1. K. Venkadesh, "AI for lung cancer screening", PhD thesis, 2024.
    Abstract Url

Master theses

  1. S. Vyawahare, K. Venkadesh and C. Jacobs, "Automated segmentation of subsolid pulmonary nodules in CT scans using deep learning", Master thesis, 2023.
    Abstract