Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint--a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases. Metrics Reloaded is a comprehensive framework for guiding researchers in the problem-aware selection of metrics for common tasks in biomedical image analysis.
Metrics reloaded: recommendations for image analysis validation
L. Maier-Hein, A. Reinke, P. Godau, M. Tizabi, F. Buettner, E. Christodoulou, B. Glocker, F. Isensee, J. Kleesiek, M. Kozubek, M. Reyes, M. Riegler, M. Wiesenfarth, A. Kavur, C. Sudre, M. Baumgartner, M. Eisenmann, D. Heckmann-Nötzel, T. Rädsch, L. Acion, M. Antonelli, T. Arbel, S. Bakas, A. Benis, M. Blaschko, M. Cardoso, V. Cheplygina, B. Cimini, G. Collins, K. Farahani, L. Ferrer, A. Galdran, B. van Ginneken, R. Haase, D. Hashimoto, M. Hoffman, M. Huisman, P. Jannin, C. Kahn, D. Kainmueller, B. Kainz, A. Karargyris, A. Karthikesalingam, F. Kofler, A. Kopp-Schneider, A. Kreshuk, T. Kurc, B. Landman, G. Litjens, A. Madani, K. Maier-Hein, A. Martel, P. Mattson, E. Meijering, B. Menze, K. Moons, H. Müller, B. Nichyporuk, F. Nickel, J. Petersen, N. Rajpoot, N. Rieke, J. Saez-Rodriguez, C. Sánchez, S. Shetty, M. van Smeden, R. Summers, A. Taha, A. Tiulpin, S. Tsaftaris, B. Van Calster, G. Varoquaux and P. Jäger
Nature Methods 2024;21:195-212.