Publications of Mathias Prokop
2024
Papers in international journals
- D. Zhong, G. Sidorenkov, C. Jacobs, P. de Jong, H. Gietema, R. Stadhouders, K. Nackaerts, J. Aerts, M. Prokop, H. Groen, G. de Bock, R. Vliegenthart, M. Heuvelmans and S. Atzen, "Lung Nodule Management in Low-Dose CT Screening for Lung Cancer: Lessons from the NELSON Trial", Radiology, 2024;313.
- S. Schalekamp, K. van Leeuwen, E. Calli, K. Murphy, M. Rutten, B. Geurts, L. Peters-Bax, B. van Ginneken and M. Prokop, "Performance of AI to exclude normal chest radiographs to reduce radiologists' workload", European Radiology, 2024.
- D. Peeters, N. Alves, K. Venkadesh, R. Dinnessen, Z. Saghir, E. Scholten, C. Schaefer-Prokop, R. Vliegenthart, M. Prokop and C. Jacobs, "Enhancing a deep learning model for pulmonary nodule malignancy risk estimation in chest CT with uncertainty estimation", European Radiology, 2024;34:6639-6651.
Preprints
- H. Häntze, L. Xu, F. Dorfner, L. Donle, D. Truhn, H. Aerts, M. Prokop, B. van Ginneken, A. Hering, L. Adams and K. Bressem, "MRSegmentator: Robust Multi-Modality Segmentation of 40 Classes in MRI and CT Sequences", arXiv:2405.06463, 2024.
Abstracts
- N. Antonissen, K. Venkadesh, H. Gietema, R. Vliegenthart, Z. Saghir, E. Scholten, M. Prokop, C. Schaefer-Prokop and C. Jacobs, "Retrospective validation and comparison of deep learning based risk thresholds versus growth-centric protocols in pulmonary nodule assessment in screening", Annual Meeting of the European Society of Thoracic Imaging, 2024.
- F. van der Graaf, N. Antonissen, E. Scholten, M. Prokop and C. Jacobs, "Assessing the agreement between privacy-preserving Llama model and human experts when labelling radiology reports for specific significant incidental findings in lung cancer screening", Annual Meeting of the European Society of Thoracic Imaging, 2024.
- B. Obreja, K. Venkadesh, W. Hendrix, Z. Saghir, M. Prokop and C. Jacobs, "Deep Learning for estimating pulmonary nodule malignancy risk: How much data does AI need to reach radiologist level performance?", European Congress of Radiology, 2024.
- F. van der Graaf, N. Antonissen, Z. Saghir, M. Prokop and C. Jacobs, "External validation of the Sybil risk model as a tool to identify low-risk individuals eligible for biennial lung cancer screening", European Congress of Radiology, 2024.
- D. Peeters, K. Venkadesh, R. Dinnessen, Z. Saghir, E. Scholten, R. Vliegenthart, M. Prokop and C. Jacobs, "Towards safe and reliable implementation of AI models for nodule malignancy estimation using distance-based out-of-distribution detection", Annual Meeting of the European Society of Thoracic Imaging, 2024.
PhD theses
- K. Venkadesh, "AI for lung cancer screening", PhD thesis, 2024.
- S. van de Leemput, "Efficient neural network training for 4D-CTA stroke imaging", PhD thesis, 2024.
- G. Humpire-Mamani, "Deep Learning for Localization and Segmentation in Thorax Abdomen CT", PhD thesis, 2024.