G. Litjens, T. Kooi, B. Ehteshami Bejnordi, A. Setio, F. Ciompi, M. Ghafoorian, J. van der Laak, B. van Ginneken and C. Sánchez, "A Survey on Deep Learning in Medical Image Analysis",
Medical Image Analysis,
2017;42:60-88.
J. Staal, M. Abràmoff, M. Niemeijer, M. Viergever and B. van Ginneken, "Ridge Based Vessel Segmentation in Color Images of the Retina",
IEEE Transactions on Medical Imaging,
2004;23(4):501-509.
G. Rubin, C. Ryerson, L. Haramati, N. Sverzellati, J. Kanne, S. Raoof, N. Schluger, A. Volpi, J. Yim, I. Martin, D. Anderson, C. Kong, T. Altes, A. Bush, S. Desai, J. Goldin, J. Goo, M. Humbert, Y. Inoue, H. Kauczor, F. Luo, P. Mazzone, M. Prokop, M. Remy-Jardin, L. Richeldi, C. Schaefer-Prokop, N. Tomiyama, A. Wells and A. Leung, "The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic",
Chest,
2020;158:106-116.
B. Ehteshami Bejnordi, M. Veta, P. van Diest, B. van Ginneken, N. Karssemeijer, G. Litjens, J. van der Laak, T. Consortium, M. Hermsen, Q. Manson, M. Balkenhol, O. Geessink, N. Stathonikos, M. van Dijk, P. Bult, F. Beca, A. Beck, D. Wang, A. Khosla, R. Gargeya, H. Irshad, A. Zhong, Q. Dou, Q. Li, H. Chen, H. Lin, P. Heng, C. Haß, E. Bruni, Q. Wong, U. Halici, M. Öner, R. Cetin-Atalay, M. Berseth, V. Khvatkov, A. Vylegzhanin, O. Kraus, M. Shaban, N. Rajpoot, R. Awan, K. Sirinukunwattana, T. Qaiser, Y. Tsang, D. Tellez, J. Annuscheit, P. Hufnagl, M. Valkonen, K. Kartasalo, L. Latonen, P. Ruusuvuori, K. Liimatainen, S. Albarqouni, B. Mungal, A. George, S. Demirci, N. Navab, S. Watanabe, S. Seno, Y. Takenaka, H. Matsuda, H. Ahmady Phoulady, V. Kovalev, A. Kalinovsky, V. Liauchuk, G. Bueno, M. Fernandez-Carrobles, I. Serrano, O. Deniz, D. Racoceanu and R. Venâncio, "Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer",
Journal of the American Medical Association,
2017;318(22):2199-2210.
D. Naidich, A. Bankier, H. MacMahon, C. Schaefer-Prokop, M. Pistolesi, J. Goo, P. Macchiarini, J. Crapo, C. Herold, J. Austin and W. Travis, "Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society",
Radiology,
2013;266(1):304-317.
A. Setio, F. Ciompi, G. Litjens, P. Gerke, C. Jacobs, S. van Riel, M. Wille, M. Naqibullah, C. Sánchez and B. van Ginneken, "Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks",
IEEE Transactions on Medical Imaging,
2016;35(5):1160-1169.
T. Heimann, B. van Ginneken, M. Styner, Y. Arzhaeva, V. Aurich, C. Bauer, A. Beck, C. Becker, R. Beichel, G. Bekes, F. Bello, G. Binnig, H. Bischof, A. Bornik, P. Cashman, Y. Chi, A. Cordova, B. Dawant, M. Fidrich, J. Furst, D. Furukawa, L. Grenacher, J. Hornegger, D. Kainmuller, R. Kitney, H. Kobatake, H. Lamecker, T. Lange, J. Lee, B. Lennon, R. Li, S. Li, H. Meinzer, G. Nemeth, D. Raicu, A. Rau, E. van Rikxoort, M. Rousson, L. Rusko, K. Saddi, G. Schmidt, D. Seghers, A. Shimizu, P. Slagmolen, E. Sorantin, G. Soza, R. Susomboon, J. Waite, A. Wimmer and I. Wolf, "Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets",
IEEE Transactions on Medical Imaging,
2009;28(8):1251-1265.
M. Niemeijer, J. Staal, B. van Ginneken, M. Loog and M. Abràmoff, "Comparative Study of Retinal Vessel Segmentation Methods on a New Publicly Available Database",
Medical Imaging,
2004;5370:648-656.
A. Setio, A. Traverso, T. de Bel, M. Berens, C. Bogaard, P. Cerello, H. Chen, Q. Dou, M. Fantacci, B. Geurts, R. Gugten, P. Heng, B. Jansen, M. de Kaste, V. Kotov, J. Lin, J. Manders, A. Sonora-Mengana, J. Garcia-Naranjo, E. Papavasileiou, M. Prokop, M. Saletta, C. Schaefer-Prokop, E. Scholten, L. Scholten, M. Snoeren, E. Torres, J. Vandemeulebroucke, N. Walasek, G. Zuidhof, B. Ginneken and C. Jacobs, "Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge",
Medical Image Analysis,
2017;42:1-13.
G. Litjens, C. Sánchez, N. Timofeeva, M. Hermsen, I. Nagtegaal, I. Kovacs, C. Hulsbergen-van de Kaa, P. Bult, B. van Ginneken and J. van der Laak, "Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis",
Scientific Reports,
2016;6:26286.
T. Kooi, G. Litjens, B. van Ginneken, A. Gubern-Mérida, C. Sánchez, R. Mann, A. den Heeten and N. Karssemeijer, "Large scale deep learning for computer aided detection of mammographic lesions",
Medical Image Analysis,
2017;35:303-312.
A. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani, B. van Ginneken, A. Kopp-Schneider, B. Landman, G. Litjens, B. Menze, O. Ronneberger, R. Summers, P. Bilic, P. Christ, R. Do, M. Gollub, J. Golia-Pernicka, S. Heckers, W. Jarnagin, M. McHugo, S. Napel, E. Vorontsov, L. Maier-Hein and M. Cardoso, "A large annotated medical image dataset for the development and evaluation of segmentation algorithms",
arXiv:1902.09063,
2019.
B. van Ginneken, A. Frangi, J. Staal, B. ter Romeny and M. Viergever, "Active shape model segmentation with optimal features",
IEEE Transactions on Medical Imaging,
2002;21(8):924-933.
C. Hoeks, J. Barentsz, T. Hambrock, D. Yakar, D. Somford, S. Heijmink, T. Scheenen, P. Vos, H. Huisman, I. van Oort, J. Witjes, A. Heerschap and J. Fütterer, "Prostate Cancer: Multiparametric MR Imaging for Detection, Localization, and Staging",
Radiology,
2011;261(1):46-66.
P. Bilic, P. Christ, H. Li, E. Vorontsov, A. Ben-Cohen, G. Kaissis, A. Szeskin, C. Jacobs, G. Mamani, G. Chartrand, F. Lohofer, J. Holch, W. Sommer, F. Hofmann, A. Hostettler, N. Lev-Cohain, M. Drozdzal, M. Amitai, R. Vivanti, J. Sosna, I. Ezhov, A. Sekuboyina, F. Navarro, F. Kofler, J. Paetzold, S. Shit, X. Hu, J. Lipkova, M. Rempfler, M. Piraud, J. Kirschke, B. Wiestler, Z. Zhang, C. Hulsemeyer, M. Beetz, F. Ettlinger, M. Antonelli, W. Bae, M. Bellver, L. Bi, H. Chen, G. Chlebus, E. Dam, Q. Dou, C. Fu, B. Georgescu, X. Giro-i-Nieto, F. Gruen, X. Han, P. Heng, J. Hesser, J. Moltz, C. Igel, F. Isensee, P. Jager, F. Jia, K. Kaluva, M. Khened, I. Kim, J. Kim, S. Kim, S. Kohl, T. Konopczynski, A. Kori, G. Krishnamurthi, F. Li, H. Li, J. Li, X. Li, J. Lowengrub, J. Ma, K. Maier-Hein, K. Maninis, H. Meine, D. Merhof, A. Pai, M. Perslev, J. Petersen, J. Pont-Tuset, J. Qi, X. Qi, O. Rippel, K. Roth, I. Sarasua, A. Schenk, Z. Shen, J. Torres, C. Wachinger, C. Wang, L. Weninger, J. Wu, D. Xu, X. Yang, S. Yu, Y. Yuan, M. Yue, L. Zhang, J. Cardoso, S. Bakas, R. Braren, V. Heinemann, C. Pal, A. Tang, S. Kadoury, L. Soler, B. van Ginneken, H. Greenspan, L. Joskowicz and B. Menze, "The Liver Tumor Segmentation Benchmark (LiTS)",
Medical Image Analysis,
2022;84:102680.
P. Bilic, P. Christ, E. Vorontsov, G. Chlebus, H. Chen, Q. Dou, C. Fu, X. Han, P. Heng, J. Hesser, S. Kadoury, T. Konopczynski, M. Le, C. Li, X. Li, J. Lipkova, J. Lowengrub, H. Meine, J. Moltz, C. Pal, M. Piraud, X. Qi, J. Qi, M. Rempfler, K. Roth, A. Schenk, A. Sekuboyina, E. Vorontsov, P. Zhou, C. Hulsemeyer, M. Beetz, F. Ettlinger, F. Gruen, G. Kaissis, F. Lohofer, R. Braren, J. Holch, F. Hofmann, W. Sommer, V. Heinemann, C. Jacobs, G. Humpire Mamani, B. van Ginneken, G. Chartrand, A. Tang, M. Drozdzal, A. Ben-Cohen, E. Klang, M. Amitai, E. Konen, H. Greenspan, J. Moreau, A. Hostettler, L. Soler, R. Vivanti, A. Szeskin, N. Lev-Cohain, J. Sosna, L. Joskowicz and B. Menze, "The Liver Tumor Segmentation Benchmark (LiTS)",
arXiv:1901.04056,
2019.
I. Sluimer, A. Schilham, M. Prokop and B. van Ginneken, "Computer analysis of computed tomography scans of the lung: a survey",
IEEE Transactions on Medical Imaging,
2006;25(4):385-405.
H. Greenspan, R. Summers and B. van Ginneken, "Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique",
IEEE Transactions on Medical Imaging,
2016;35(5):1153-1159.
J. Fütterer, S. Heijmink, T. Scheenen, J. Veltman, H. Huisman, P. Vos, C. Hulsbergen-van de Kaa, J. Witjes, P. Krabbe, A. Heerschap and J. Barentsz, "Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging",
Radiology,
2006;241(2):449-458.
M. Prokop, W. van Everdingen, T. van Rees Vellinga, J. van Quarles Ufford, L. Stoger, L. Beenen, B. Geurts, H. Gietema, J. Krdzalic, C. Schaefer-Prokop, B. van Ginneken, M. Brink and the COVID-19 Standardized Reporting Working Group of the Dutch Radiological Society, "CO-RADS - A categorical CT assessment scheme for patients with suspected COVID-19: definition and evaluation",
Radiology,
2020;296(2):E97-E104.
B. van Ginneken, B. ter Haar Romeny and M. Viergever, "Computer-aided diagnosis in chest radiography: a survey",
IEEE Transactions on Medical Imaging,
2001;20(12):1228-1241.
M. Niemeijer, B. van Ginneken, J. Staal, M. Suttorp-Schulten and M. Abràmoff, "Automatic Detection of Red Lesions in Digital Color Fundus Photographs",
IEEE Transactions on Medical Imaging,
2005;24(5):584-592.
G. Litjens, R. Toth, W. van de Ven, C. Hoeks, S. Kerkstra, B. van Ginneken, G. Vincent, G. Guillard, N. Birbeck, J. Zhang, R. Strand, F. Malmberg, Y. Ou, C. Davatzikos, M. Kirschner, F. Jung, J. Yuan, W. Qiu, Q. Gao, P. Edwards, B. Maan, F. van der Heijden, S. Ghose, J. Mitra, J. Dowling, D. Barratt, H. Huisman and A. Madabhushi, "Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge",
Medical Image Analysis,
2014;18(2):359-373.
T. Hambrock, D. Somford, H. Huisman, I. van Oort, J. Witjes, C. de Hulsbergen-van Kaa, T. Scheenen and J. Barentsz, "Relationship between Apparent Diffusion Coefficients at 3.0-T MR Imaging and Gleason Grade in Peripheral Zone Prostate Cancer",
Radiology,
2011;259(2):453-461.
M. Niemeijer, B. van Ginneken, M. Cree, A. Mizutani, G. Quellec, C. Sánchez, B. Zhang, R. Hornero, M. Lamard, C. Muramatsu, X. Wu, G. Cazuguel, J. You, A. Mayo, Q. Li, Y. Hatanaka, B. Cochener, C. Roux, F. Karray, M. Garcia, H. Fujita and M. Abràmoff, "Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs",
IEEE Transactions on Medical Imaging,
2010;29(1):185-195.
M. Antonelli, A. Reinke, S. Bakas, K. Farahani, AnnetteKopp-Schneider, B. Landman, G. Litjens, B. Menze, O. Ronneberger, R. Summers, B. van Ginneken, M. Bilello, P. Bilic, P. Christ, R. Do, M. Gollub, S. Heckers, H. Huisman, W. Jarnagin, M. McHugo, S. Napel, J. Pernicka, K. Rhode, C. Tobon-Gomez, E. Vorontsov, H. Huisman, J. Meakin, S. Ourselin, M. Wiesenfarth, P. Arbelaez, B. Bae, S. Chen, L. Daza, J. Feng, B. He, F. Isensee, Y. Ji, F. Jia, N. Kim, I. Kim, D. Merhof, A. Pai, B. Park, M. Perslev, R. Rezaiifar, O. Rippel, I. Sarasua, W. Shen, J. Son, C. Wachinger, L. Wang, Y. Wang, Y. Xia, D. Xu, Z. Xu, Y. Zheng, A. Simpson, L. Maier-Hein and M. Cardoso, "The Medical Segmentation Decathlon",
arXiv preprint arXiv:2106.05735,
2021.
M. Antonelli, A. Reinke, S. Bakas, K. Farahani, A. Kopp-Schneider, B. Landman, G. Litjens, B. Menze, O. Ronneberger, R. Summers, B. van Ginneken, M. Bilello, P. Bilic, P. Christ, R. Do, M. Gollub, S. Heckers, H. Huisman, W. Jarnagin, M. McHugo, S. Napel, J. Pernicka, K. Rhode, C. Tobon-Gomez, E. Vorontsov, J. Meakin, S. Ourselin, M. Wiesenfarth, P. Arbelaez, B. Bae, S. Chen, L. Daza, J. Feng, B. He, F. Isensee, Y. Ji, F. Jia, I. Kim, K. Maier-Hein, D. Merhof, A. Pai, B. Park, M. Perslev, R. Rezaiifar, O. Rippel, I. Sarasua, W. Shen, J. Son, C. Wachinger, L. Wang, Y. Wang, Y. Xia, D. Xu, Z. Xu, Y. Zheng, A. Simpson, L. Maier-Hein and M. Cardoso, "The Medical Segmentation Decathlon",
Nature Communications,
2022;13(1):4128.
M. Engelbrecht, H. Huisman, R. Laheij, G. Jager, G. van Leenders, C. de Hulsbergen-van Kaa, J. de la Rosette, J. Blickman and J. Barentsz, "Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging",
Radiology,
2003;229(1):248-254.
W. Bulten, H. Pinckaers, H. van Boven, R. Vink, T. de Bel, B. van Ginneken, J. van der Laak, C. de Hulsbergen-van Kaa and G. Litjens, "Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study",
Lancet Oncology,
2020;21(2):233-241.
K. Murphy, B. van Ginneken, J. Reinhardt, S. Kabus, K. Ding, X. Deng, K. Cao, K. Du, G. Christensen, V. Garcia, T. Vercauteren, N. Ayache, O. Commowick, G. Malandain, B. Glocker, N. Paragios, N. Navab, V. Gorbunova, J. Sporring, M. de Bruijne, X. Han, M. Heinrich, J. Schnabel, M. Jenkinson, C. Lorenz, M. Modat, J. McClelland, S. Ourselin, S. Muenzing, M. Viergever, D. Nigris, D. Collins, T. Arbel, M. Peroni, R. Li, G. Sharp, A. Schmidt-Richberg, J. Ehrhardt, R. Werner, D. Smeets, D. Loeckx, G. Song, N. Tustison, B. Avants, J. Gee, M. Staring, S. Klein, B. Stoel, M. Urschler, M. Werlberger, J. Vandemeulebroucke, S. Rit, D. Sarrut and J. Pluim, "Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge",
IEEE Transactions on Medical Imaging,
2011;31(11):1901-1920.
M. Niemeijer, B. van Ginneken, S. Russel, M. Suttorp-Schulten and M. Abràmoff, "Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis",
Investigative Ophthalmology and Visual Science,
2007;48(5):2260-2267.
P. Bándi, O. Geessink, Q. Manson, M. van Dijk, M. Balkenhol, M. Hermsen, B. Bejnordi, B. Lee, K. Paeng, A. Zhong, Q. Li, F. Zanjani, S. Zinger, K. Fukuta, D. Komura, V. Ovtcharov, S. Cheng, S. Zeng, J. Thagaard, A. Dahl, H. Lin, H. Chen, L. Jacobsson, M. Hedlund, M. Cetin, E. Halici, H. Jackson, R. Chen, F. Both, J. Franke, H. Kusters-Vandevelde, W. Vreuls, P. Bult, B. van Ginneken, J. van der Laak and G. Litjens, "From detection of individual metastases to classification of lymph node status at the patient level: the CAMELYON17 challenge",
IEEE Transactions on Medical Imaging,
2018;38(2):550-560.
T. Hambrock, D. Somford, C. Hoeks, S. Bouwense, H. Huisman, D. Yakar, I. van Oort, J. Witjes, J. Fütterer and J. Barentsz, "Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen",
Journal of Urology,
2010;183(2):520-527.
I. Išgum, M. Staring, A. Rutten, M. Prokop, M. Viergever and B. van Ginneken, "Multi-Atlas-Based Segmentation With Local Decision Fusion - Application to Cardiac and Aortic Segmentation in CT Scans",
IEEE Transactions on Medical Imaging,
2009;28:1000-1010.
B. van Ginneken, M. Stegmann and M. Loog, "Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database",
Medical Image Analysis,
2006;10(1):19-40.
D. Tellez, G. Litjens, P. Bándi, W. Bulten, J. Bokhorst, F. Ciompi and J. van der Laak, "Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology",
Medical Image Analysis,
2019;58:101544.
M. van Grinsven, B. van Ginneken, C. Hoyng, T. Theelen and C. Sánchez., "Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images",
IEEE Transactions on Medical Imaging,
2016;35(5):1273-1284.
G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer and H. Huisman, "Computer-aided detection of prostate cancer in MRI",
IEEE Transactions on Medical Imaging,
2014;33(5):1083-1092.
M. Kallenberg, K. Petersen, M. Nielsen, A. Ng, P. Diao, C. Igel, C. Vachon, K. Holland, N. Karssemeijer and M. Lillholm, "Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring",
IEEE Transactions on Medical Imaging,
2016;35:1322-1331.
S. Heijmink, J. Fütterer, T. Hambrock, S. Takahashi, T. Scheenen, H. Huisman, C. de Hulsbergen-Van Kaa, B. Knipscheer, L. Kiemeney, J. Witjes and J. Barentsz, "Prostate cancer: body-array versus endorectal coil MR imaging at 3 T--comparison of image quality, localization, and staging performance",
Radiology,
2007;244(1):184-195.
L. Adams, M. Makowski, G. Engel, M. Rattunde, F. Busch, P. Asbach, S. Niehues, S. Vinayahalingam, B. van Ginneken, G. Litjens and K. Bressem, "Dataset of prostate MRI annotated for anatomical zones and cancer.",
Data in brief,
2022;45:108739.
T. Hambrock, C. Hoeks, C. de Hulsbergen-van Kaa, T. Scheenen, J. Fütterer, S. Bouwense, I. van Oort, F. Schröder, H. Huisman and J. Barentsz, "Prospective Assessment of Prostate Cancer Aggressiveness Using 3-T Diffusion-Weighted Magnetic Resonance Imaging-Guided Biopsies Versus a Systematic 10-Core Transrectal Ultrasound Prostate Biopsy Cohort",
European Urology,
2012;61(1):177-184.
M. Bakker, S. de Lange, R. Pijnappel, R. Mann, P. Peeters, E. Monninkhof, M. Emaus, C. Loo, R. Bisschops, M. Lobbes, M. de Jong, K. Duvivier, J. Veltman, N. Karssemeijer, H. de Koning, P. van Diest, W. Mali, M. van den Bosch, W. Veldhuis, C. van Gils and D. Group, "Supplemental MRI Screening for Women with Extremely Dense Breast Tissue",
New England Journal of Medicine,
2019;381(22):2091-2102.
M. Galanski, M. Prokop, A. Chavan, C. Schaefer, K. Jandeleit and J. Nischelsky, "Renal arterial stenoses: spiral CT angiography",
Radiology,
1993;189(1):185-192.
K. Murphy, B. van Ginneken, A. Schilham, B. de Hoop, H. Gietema and M. Prokop, "A Large Scale Evaluation of Automatic Pulmonary Nodule Detection in Chest CT using Local Image Features and k-Nearest-Neighbour Classification",
Medical Image Analysis,
2009;13(5):757-770.
I. Sluimer, M. Prokop and B. van Ginneken, "Toward automated segmentation of the pathological lung in CT",
IEEE Transactions on Medical Imaging,
2005;24(8):1025-1038.
F. Ciompi, K. Chung, S. van Riel, A. Setio, P. Gerke, C. Jacobs, E. Scholten, C. Schaefer-Prokop, M. Wille, A. Marchiano, U. Pastorino, M. Prokop and B. van Ginneken, "Towards automatic pulmonary nodule management in lung cancer screening with deep learning",
Scientific Reports,
2017(46479).
K. Klooster, N. ten Hacken, J. Hartman, H. Kerstjens, E. van Rikxoort and D. Slebos, "Endobronchial Valves for Emphysema without Interlobar Collateral Ventilation",
New England Journal of Medicine,
2015;373(24):2325-2335.
S. Kazeminia, C. Baur, A. Kuijper, B. van Ginneken, N. Navab, S. Albarqouni and A. Mukhopadhyay, "GANs for Medical Image Analysis",
Artificial Intelligence in Medicine,
2020;109:101938.
B. van Ginneken, S. Armato, B. de Hoop, S. van de Vorst, T. Duindam, M. Niemeijer, K. Murphy, A. Schilham, A. Retico, M. Fantacci, N. Camarlinghi, F. Bagagli, I. Gori, T. Hara, H. Fujita, G. Gargano, R. Belloti, F. Carlo, R. Megna, S. Tangaro, L. Bolanos, P. Cerello, S. Cheran, E. Torres and M. Prokop, "Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study",
Medical Image Analysis,
2010;14:707-722.
G. Litjens, P. Bándi, B. Ehteshami Bejnordi, O. Geessink, M. Balkenhol, P. Bult, A. Halilovic, M. Hermsen, R. van de Loo, R. Vogels, Q. Manson, N. Stathonikos, A. Baidoshvili, P. van Diest, C. Wauters, M. van Dijk and J. van der Laak, "1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset",
GigaScience,
2018;7(6):1-8.
M. Ghafoorian, A. Mehrtash, T. Kapur, N. Karssemeijer, E. Marchiori, M. Pesteie, C. Guttmann, F. de Leeuw, C. Tempany, B. van Ginneken, A. Fedorov, P. Abolmaesumi, B. Platel and W. Wells, "Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation",
Medical Image Computing and Computer-Assisted Intervention,
2017;10435:516-524.
M. Abràmoff, M. Niemeijer, M. Suttorp-Schulten, M. Viergever, S. Russell and B. van Ginneken, "Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes",
Diabetes Care,
2008;31(2):193-198.
R. Manniesing, M. Viergever and W. Niessen, "Vessel enhancing diffusion: a scale space representation of vessel structures",
Medical Image Analysis,
2006;10(6):815-825.
B. van Ginneken, S. Katsuragawa, B. ter Haar Romeny, K. Doi and M. Viergever, "Automatic detection of abnormalities in chest radiographs using local texture analysis",
IEEE Transactions on Medical Imaging,
2002;21(2):139-149.
A. Bankier, H. MacMahon, J. Goo, G. Rubin, C. Schaefer-Prokop and D. Naidich, "Recommendations for Measuring Pulmonary Nodules at CT: A Statement from the Fleischner Society",
Radiology,
2017;285:584-600.
B. van Ginneken, A. Setio, C. Jacobs and F. Ciompi, "Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans",
IEEE International Symposium on Biomedical Imaging,
2015:286-289.
F. Ciompi, B. de Hoop, S. van Riel, K. Chung, E. Scholten, M. Oudkerk, P. de Jong, M. Prokop and B. van Ginneken, "Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box",
Medical Image Analysis,
2015;26(1):195-202.
G. van Leenders, T. van der Kwast, D. Grignon, A. Evans, G. Kristiansen, C. Kweldam, G. Litjens, J. McKenney, J. Melamed, N. Mottet, G. Paner, H. Samaratunga, I. Schoots, J. Simko, T. Tsuzuki, M. Varma, A. Warren, T. Wheeler, S. Williamson, K. Iczkowski and I. Members, "The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma.",
American Journal of Surgical Pathology,
2020;44(8):e87-e99.
E. van Rikxoort, B. de Hoop, M. Viergever, M. Prokop and B. van Ginneken, "Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection",
Medical Physics,
2009;36(7):2934-2947.
M. Niemeijer, M. Abràmoff and B. van Ginneken, "Fast detection of the optic disc and fovea in color fundus photographs",
Medical Image Analysis,
2009;13(6):859-870.
L. Maier-Hein, M. Eisenmann, A. Reinke, S. Onogur, M. Stankovic, P. Scholz, T. Arbel, H. Bogunovic, A. Bradley, A. Carass, C. Feldmann, A. Frangi, P. Full, B. van Ginneken, A. Hanbury, K. Honauer, M. Kozubek, B. Landman, K. Marz, O. Maier, K. Maier-Hein, B. Menze, H. Muller, P. Neher, W. Niessen, N. Rajpoot, G. Sharp, K. Sirinukunwattana, S. Speidel, C. Stock, D. Stoyanov, A. Taha, F. van der Sommen, C. Wang, M. Weber, G. Zheng, P. Jannin and A. Kopp-Schneider, "Why rankings of biomedical image analysis competitions should be interpreted with care",
Nature Communications,
2018;9(1):5217.
J. Fütterer, M. Engelbrecht, H. Huisman, G. Jager, C. de Hulsbergen-van Kaa, J. Witjes and J. Barentsz, "Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers",
Radiology,
2005;237(2):541-549.
B. van Ginneken, C. Schaefer-Prokop and M. Prokop, "Computer-aided Diagnosis: how to Move from the Laboratory to the Clinic",
Radiology,
2011;261(3):719-732.
B. Bejnordi, G. Litjens, N. Timofeeva, I. Otte-Holler, A. Homeyer, N. Karssemeijer and J. van der Laak, "Stain specific standardization of whole-slide histopathological images",
IEEE Transactions on Medical Imaging,
2016;35(2):404-415.
S. van Engeland, P. Snoeren, H. Huisman, C. Boetes and N. Karssemeijer, "Volumetric breast density estimation from full-field digital mammograms",
IEEE Transactions on Medical Imaging,
2006;25(3):273-282.
M. Niemeijer, M. Abràmoff and B. van Ginneken, "Segmentation of the optic disc, macula and vascular arch in fundus photographs",
IEEE Transactions on Medical Imaging,
2007;26(1):116-127.
G. Litjens, F. Ciompi, J. Wolterink, B. de Vos, T. Leiner, J. Teuwen and I. Isgum, "State-of-the-Art Deep Learning in Cardiovascular Image Analysis",
JACC Cardiovascular Imaging,
2019;12(8 Pt 1):1549-1565.
P. Lo, B. van Ginneken, J. Reinhardt, Y. Tarunashree, P. de Jong, B. Irving, C. Fetita, M. Ortner, R. Pinho, J. Sijbers, M. Feuerstein, A. Fabijanska, C. Bauer, R. Beichel, C. Mendoza, R. Wiemker, J. Lee, A. Reeves, S. Born, O. Weinheimer, E. van Rikxoort, J. Tschirren, K. Mori, B. Odry, D. Naidich, I. Hartmann, E. Hoffman, M. Prokop, J. Pedersen and M. de Bruijne, "Extraction of Airways from CT (EXACT'09)",
IEEE Transactions on Medical Imaging,
2012;31(11):2093-2107.
C. Jacobs, E. van Rikxoort, T. Twellmann, E. Scholten, P. de Jong, J. Kuhnigk, M. Oudkerk, H. de Koning, M. Prokop, C. Schaefer-Prokop and B. van Ginneken, "Automatic Detection of Subsolid Pulmonary Nodules in Thoracic Computed Tomography Images",
Medical Image Analysis,
2014;18:374-384.
D. Abásolo, R. Hornero, P. Espino, J. Poza, C. Sánchez and R. de la Rosa, "Analysis of regularity in the EEG background activity of Alzheimer's disease patients with Approximate Entropy",
Clinical Neurophysiology,
2005;116(8):1826-1834.
C. Sánchez, M. García, A. Mayo, M. López and R. Hornero, "Retinal image analysis based on mixture models to detect hard exudates",
Medical Image Analysis,
2009;13(4):650-658.
M. Veta, Y. Heng, N. Stathonikos, B. Bejnordi, F. Beca, T. Wollmann, K. Rohr, M. Shah, D. Wang, M. Rousson, M. Hedlund, D. Tellez, F. Ciompi, E. Zerhouni, D. Lanyi, M. Viana, V. Kovalev, V. Liauchuk, H. Phoulady, T. Qaiser, S. Graham, N. Rajpoot, E. Sjoblom, J. Molin, K. Paeng, S. Hwang, S. Park, Z. Jia, E. Chang, Y. Xu, A. Beck, P. van Diest and J. Pluim, "Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge",
Medical Image Analysis,
2019;54(5):111-121.
J. Barentsz, G. Jager, P. van Vierzen, J. Witjes, S. Strijk, H. Peters, N. Karssemeijer and S. Ruijs, "Staging urinary bladder cancer after transurethral biopsy: value of fast dynamic contrast-enhanced MR imaging",
Radiology,
1996;201(1):185-193.
S. Timp and N. Karssemeijer, "A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography",
Medical Physics,
2004;31(5):958-971.
M. Hermsen, T. de Bel, M. den Boer, E. Steenbergen, J. Kers, S. Florquin, J. Roelofs, M. Stegall, M. Alexander, B. Smith, B. Smeets, L. Hilbrands and J. van der Laak, "Deep-learning based histopathologic assessment of kidney tissue",
Journal of the American Society of Nephrology,
2019;30(10):1968-1979.
E. Calli, E. Sogancioglu, B. van Ginneken, K. van Leeuwen and K. Murphy, "Deep learning for chest X-ray analysis: A survey",
Medical Image Analysis,
2021;72:102125.
M. Ghafoorian, N. Karssemeijer, T. Heskes, I. van Uden, C. Sánchez, G. Litjens, F. de Leeuw, B. van Ginneken, E. Marchiori and B. Platel, "Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities",
Scientific Reports,
2017;7(1):5110.
M. Giger, N. Karssemeijer and J. Schnabel, "Breast Image Analysis for Risk Assessment, Detection, Diagnosis, and Treatment of Cancer",
Annual Review of Biomedical Engineering,
2013;15:327-57.
N. Karssemeijer, "Adaptive noise equalization and recognition of microcalcification clusters in mammograms",
Int J Patt Recogn Artif Intell,
1993;7:1357-1375.
D. Tellez, M. Balkenhol, I. Otte-Holler, R. van de Loo, R. Vogels, P. Bult, C. Wauters, W. Vreuls, S. Mol, N. Karssemeijer, G. Litjens, J. van der Laak and F. Ciompi, "Whole-Slide Mitosis Detection in H&E Breast Histology Using PHH3 as a Reference to Train Distilled Stain-Invariant Convolutional Networks",
IEEE Transactions on Medical Imaging,
2018;37(9):2126 - 2136.
B. de Hoop, H. Gietema, S. van de Vorst, K. Murphy, R. van Klaveren and M. Prokop, "Pulmonary ground-glass nodules: increase in mass as an early indicator of growth",
Radiology,
2010;255(1):199-206.
M. García, C. Sánchez, M. López, D. Abásolo and R. Hornero, "Neural network based detection of hard exudates in retinal images",
Computer Methods and Programs in Biomedicine,
2009;93(1):9-19.
E. van Lin, J. Fütterer, S. Heijmink, L. van der Vight, A. Hoffmann, P. van Kollenburg, H. Huisman, T. Scheenen, J. Witjes, J. Leer, J. Barentsz and A. Visser, "IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI",
International Journal of Radiation Oncology, Biology, Physics,
2006;65(1):291-303.
W. Bulten, K. Kartasalo, P. Chen, P. Strom, H. Pinckaers, K. Nagpal, Y. Cai, D. Steiner, H. van Boven, R. Vink, C. de Hulsbergen-van Kaa, J. van der Laak, M. Amin, A. Evans, T. van der Kwast, R. Allan, P. Humphrey, H. Gronberg, H. Samaratunga, B. Delahunt, T. Tsuzuki, T. Hakkinen, L. Egevad, M. Demkin, S. Dane, F. Tan, M. Valkonen, G. Corrado, L. Peng, C. Mermel, P. Ruusuvuori, G. Litjens, M. Eklund, A. Brilhante, A. Cakir, X. Farre, K. Geronatsiou, V. Molinie, G. Pereira, P. Roy, G. Saile, P. Salles, E. Schaafsma, J. Tschui, J. Billoch-Lima, E. Pereira, M. Zhou, S. He, S. Song, Q. Sun, H. Yoshihara, T. Yamaguchi, K. Ono, T. Shen, J. Ji, A. Roussel, K. Zhou, T. Chai, N. Weng, D. Grechka, M. Shugaev, R. Kiminya, V. Kovalev, D. Voynov, V. Malyshev, E. Lapo, M. Campos, N. Ota, S. Yamaoka, Y. Fujimoto, K. Yoshioka, J. Juvonen, M. Tukiainen, A. Karlsson, R. Guo, C. Hsieh, I. Zubarev, H. Bukhar, W. Li, J. Li, W. Speier, C. Arnold, K. Kim, B. Bae, Y. Kim, H. Lee, J. Park and the PANDA challenge consortium, "Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge",
Nature Medicine,
2022.
N. Lessmann, B. van Ginneken, P. de Jong and I. Išgum, "Iterative fully convolutional neural networks for automatic vertebra segmentation",
Medical Imaging with Deep Learning,
2018.
M. Niemeijer, X. Xu, A. Dumitrescu, P. Gupta, B. van Ginneken, J. Folk and M. Abràmoff, "Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs",
IEEE Transactions on Medical Imaging,
2011;31(11):1941-1950.
M. de Bruijne, B. van Ginneken, M. Viergever and W. Niessen, "Adapting Active Shape Models for 3D segmentation of tubular structures in medical images",
Information Processing in Medical Imaging,
2003;2732:136-147.
F. Ciompi, O. Geessink, B. Bejnordi, G. de Souza, A. Baidoshvili, G. Litjens, B. van Ginneken, I. Nagtegaal and J. van der Laak, "The importance of stain normalization in colorectal tissue classification with convolutional networks",
IEEE International Symposium on Biomedical Imaging,
2017:160-163.
C. Sánchez, R. Hornero, M. López, M. Aboy, J. Poza and D. Abásolo, "A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis",
Medical Engineering and Physics,
2008;30(3):350-357.
N. Lessmann, B. van Ginneken, P. de Jong and I. Išgum, "Iterative fully convolutional neural networks for automatic vertebra segmentation and identification",
Medical Image Analysis,
2019;53:142-155.
I. Sluimer, P. van Waes, M. Viergever and B. van Ginneken, "Computer-aided diagnosis in high-resolution CT of the lungs",
Medical Physics,
2003;30(12):3081-3090.