Esophageal cancer is the fastest rising type of cancer in the Western world. The novel technology of High Definition (HD) endoscopy enables physicians to find texture patterns related to early cancer. It encourages the development of a Computer-Aided Decision (CAD) system in order to help physicians with faster identification of early cancer and decrease the miss rate. However, an appropriate texture feature extraction, which is needed for classification, has not been studied yet. In this paper, we compare several techniques for texture feature extraction, including co-occurrence matrix features, LBP and Gabor features and evaluate their performance in detecting early stage cancer in HD endoscopic images. In order to exploit more image characteristics, we introduce an efficient combination of the texture and color features. Furthermore, we add a specific preprocessing step designed for endoscopy images, which improves the classification accuracy. After reducing the feature dimensionality using Principal Component Analysis (PCA), we classify selected features with a Support Vector Machine (SVM). The experimental results validated by an expert gastroenterologist show that the proposed feature extraction is promising and reaches a classification accuracy up to 96.48%.
Evaluation and Comparison of Textural Feature Representation for the Detection of Early Stage Cancer in Endoscopy
A. Setio, F. van der Sommen, S. Zinger, E. Schoon and P. de With
Proc. VISAPP 2013:238-243.