Publications of Zaneta Swiderska-Chadaj

Papers in international journals

  1. M. Hermsen, F. Ciompi, A. Adefidipe, A. Denic, A. Dendooven, B. Smith, D. van Midden, J. Brasen, J. Kers, M. Stegall, P. Bándi, T. Nguyen, Z. Swiderska-Chadaj, B. Smeets, L. Hilbrands and J. van der Laak, "Convolutional neural networks for the evaluation of chronic and inflammatory lesions in kidney transplant biopsies", American Journal of Pathology, 2022;192(10):1418-1432.
    Abstract DOI PMID Cited by ~16
  2. M. Hermsen, V. Volk, J. Brasen, D. Geijs, W. Gwinner, J. Kers, J. Linmans, N. Schaadt, J. Schmitz, E. Steenbergen, Z. Swiderska-Chadaj, B. Smeets, L. Hilbrands and J. van der Laak, "Quantitative assessment of inflammatory infiltrates in kidney transplant biopsies using multiplex tyramide signal amplification and deep learning", Laboratory Investigation, 2021;101(8):970-982.
    Abstract DOI PMID Download Cited by ~27
  3. M. Balkenhol, F. Ciompi, Z. Swiderska-Chadaj, R. van de Loo, M. Intezar, I. Otte-Holler, D. Geijs, J. Lotz, N. Weiss, T. de Bel, G. Litjens, P. Bult and J. van der Laak, "Optimized tumour infiltrating lymphocyte assessment for triple negative breast cancer prognostics.", The Breast, 2021;56:78-87.
    Abstract DOI PMID Cited by ~20
  4. Z. Swiderska-Chadaj, K. Hebeda, M. van den Brand and G. Litjens, "Artificial intelligence to detect MYC translocation in slides of diffuse large B-cell lymphoma", Virchows Archiv, 2020.
    Abstract DOI PMID Cited by ~14
  5. Z. Swiderska-Chadaj, T. de Bel, L. Blanchet, A. Baidoshvili, D. Vossen, J. van der Laak and G. Litjens, "Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer", Scientific Reports, 2020;10(1):14398.
    Abstract DOI PMID Download Cited by ~47
  6. Z. Swiderska-Chadaj, H. Pinckaers, M. van Rijthoven, M. Balkenhol, M. Melnikova, O. Geessink, Q. Manson, M. Sherman, A. Polonia, J. Parry, M. Abubakar, G. Litjens, J. van der Laak and F. Ciompi, "Learning to detect lymphocytes in immunohistochemistry with deep learning", Medical Image Analysis, 2019;58:101547.
    Abstract DOI PMID Cited by ~106

Papers in conference proceedings

  1. Z. Swiderska-Chadaj, K. Nurzynska, G. Bartlomiej, K. Grunberg, L. van der Woude, M. Looijen-Salamon, A. Walts, T. Markiewicz, F. Ciompi and A. Gertych, "A deep learning approach to assess the predominant tumor growth pattern in whole-slide images of lung adenocarcinoma", Medical Imaging, 2020;11320:113200D.
    Abstract DOI Cited by ~4
  2. Z. Swiderska-Chadaj, K. Hebeda, M. van den Brand and G. Litjens, "Predicting MYC translocation in HE specimens of diffuse large B-cell lymphoma through deep learning", Medical Imaging, 2020;11320:1132010.
    Abstract DOI Cited by ~3
  3. Z. Swiderska-Chadaj, E. Stoelinga, A. Gertych and F. Ciompi, "Multi-Patch Blending improves lung cancer growth pattern segmentation in whole-slide images", IEEE International Conference on Computational Problems of Electrical Engineering, 2020.
    Abstract DOI Cited by ~1
  4. M. van Rijthoven, Z. Swiderska-Chadaj, K. Seeliger, J. van der Laak and F. Ciompi, "You Only Look on Lymphocytes Once", Medical Imaging with Deep Learning, 2018.
    Abstract Url Cited by ~21
  5. Z. Swiderska-Chadaj, H. Pinckaers, M. van Rijthoven, M. Balkenhol, M. Melnikova, O. Geessink, Q. Manson, G. Litjens, J. van der Laak and F. Ciompi, "Convolutional Neural Networks for Lymphocyte detection in Immunohistochemically Stained Whole-Slide Images", Medical Imaging with Deep Learning, 2018.
    Abstract Url Cited by ~12