Oncological reporting of radiology exams

Radiology departments make large amounts of CT scans of the abdomen and the thorax. Reporting those scans is time-consuming and difficult. We develop tools to speed up and improve this process.

Funding

EFRO Oost-Nederland

People

Bram van Ginneken

Bram van Ginneken

Professor, Scientific Co-Director

Alessa Hering

Alessa Hering

Assistant Professor

Matthieu Rutten

Matthieu Rutten

Associate Professor, Radiologist

Kiran Vaidhya Venkadesh

Kiran Vaidhya Venkadesh

Postdoctoral Researcher

Lena Philipp

Lena Philipp

PhD Candidate

Luc Builtjes

Luc Builtjes

PhD Candidate

Sarah de Boer

Sarah de Boer

PhD Candidate

Luuk Boulogne

Luuk Boulogne

PhD Candidate

Max de Grauw

Max de Grauw

PhD Candidate

Ernst Scholten

Ernst Scholten

Senior Researcher

Publications

  • C. Jacobs, "Challenges and outlook in the management of pulmonary nodules detected on CT", European Radiology, 2023;34:247-249.
  • W. Hendrix, M. Rutten, N. Hendrix, B. van Ginneken, C. Schaefer-Prokop, E. Scholten, M. Prokop and C. Jacobs, "Trends in the incidence of pulmonary nodules in chest computed tomography: 10-year results from two Dutch hospitals", European Radiology, 2023;33:8279-8288.
  • L. Philipp, "Body Composition Assessment in 3D CT Images", Master thesis, 2023.
  • K. Venkadesh, T. Aleef, E. Scholten, Z. Saghir, M. Silva, N. Sverzellati, U. Pastorino, B. van Ginneken, M. Prokop and C. Jacobs, "Prior CT Improves Deep Learning for Malignancy Risk Estimation of Screening-detected Pulmonary Nodules", Radiology, 2023;308(2):e223308.
  • M. Grauw and B. Ginneken, "Semi-supervised 3D universal lesion segmentation in CT thorax-abdomen scans", European Congress of Radiology, 2022.
  • M. Grauw, B. Ginneken, B. Geisler, E. Smit, M. Rooij, S. Schalekamp and M. Prokop, "Deep learning universal lesion segmentation for automated RECIST measurements on CT: comparison to manual assessment by radiologists", European Congress of Radiology, 2022.
  • K. Venkadesh, A. Setio, A. Schreuder, E. Scholten, K. Chung, M. W Wille, Z. Saghir, B. van Ginneken, M. Prokop and C. Jacobs, "Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT.", Radiology, 2021;300(2):438-447.
  • A. Hering, S. Hager, J. Moltz, N. Lessmann, S. Heldmann and B. van Ginneken, "CNN-based Lung CT Registration with Multiple Anatomical Constraints", Medical Image Analysis, 2021;72:102139.
  • W. Xie, C. Jacobs, J. Charbonnier and B. van Ginneken, "Relational Modeling for Robust and Efficient Pulmonary Lobe Segmentation in CT Scans", IEEE Transactions on Medical Imaging, 2020;39(8):2664-2675.
  • N. Lessmann, B. van Ginneken, P. de Jong and I. IĆĄgum, "Iterative fully convolutional neural networks for automatic vertebra segmentation and identification", Medical Image Analysis, 2019;53:142-155.
  • G. Humpire Mamani, A. Setio, B. van Ginneken and C. Jacobs, "Efficient organ localization using multi-label convolutional neural networks in thorax-abdomen CT scans", Physics in Medicine and Biology, 2018;63(8):085003.
  • G. Humpire Mamani, J. Bukala, E. Scholten, M. Prokop, B. van Ginneken and C. Jacobs, "Fully Automatic Volume Measurement of the Spleen at CT Using Deep Learning", Radiology: Artificial Intelligence, 2020;2(4):e190102.
  • H. Altun, G. Chlebus, C. Jacobs, H. Meine, B. van Ginneken and H. Hahn, "Feasibility of End-To-End Trainable Two-Stage U-Net for Detection of Axillary Lymph Nodes in Contrast-Enhanced CT Based Scans on Sparse Annotations", Medical Imaging, 2020:113141C.
  • G. Chlebus, A. Schenk, J. Moltz, B. van Ginneken, H. Hahn and H. Meine, "Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing", Scientific Reports, 2018;8(1):15497.