Radiology departments make large amounts of CT scans of the abdomen and the thorax. Reporting those scans is time-consuming and difficult. We develop tools to speed up and improve this process.
Oncological reporting of radiology exams
People
Publications
- C. Jacobs, "Challenges and outlook in the management of pulmonary nodules detected on CT", European Radiology, 2023;34:247-249.
- W. Hendrix, M. Rutten, N. Hendrix, B. van Ginneken, C. Schaefer-Prokop, E. Scholten, M. Prokop and C. Jacobs, "Trends in the incidence of pulmonary nodules in chest computed tomography: 10-year results from two Dutch hospitals", European Radiology, 2023;33:8279-8288.
- L. Philipp, "Body Composition Assessment in 3D CT Images", Master thesis, 2023.
- K. Venkadesh, T. Aleef, E. Scholten, Z. Saghir, M. Silva, N. Sverzellati, U. Pastorino, B. van Ginneken, M. Prokop and C. Jacobs, "Prior CT Improves Deep Learning for Malignancy Risk Estimation of Screening-detected Pulmonary Nodules", Radiology, 2023;308(2):e223308.
- M. Grauw and B. Ginneken, "Semi-supervised 3D universal lesion segmentation in CT thorax-abdomen scans", European Congress of Radiology, 2022.
- M. Grauw, B. Ginneken, B. Geisler, E. Smit, M. Rooij, S. Schalekamp and M. Prokop, "Deep learning universal lesion segmentation for automated RECIST measurements on CT: comparison to manual assessment by radiologists", European Congress of Radiology, 2022.
- K. Venkadesh, A. Setio, A. Schreuder, E. Scholten, K. Chung, M. W Wille, Z. Saghir, B. van Ginneken, M. Prokop and C. Jacobs, "Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT.", Radiology, 2021;300(2):438-447.
- A. Hering, S. Hager, J. Moltz, N. Lessmann, S. Heldmann and B. van Ginneken, "CNN-based Lung CT Registration with Multiple Anatomical Constraints", Medical Image Analysis, 2021;72:102139.
- W. Xie, C. Jacobs, J. Charbonnier and B. van Ginneken, "Relational Modeling for Robust and Efficient Pulmonary Lobe Segmentation in CT Scans", IEEE Transactions on Medical Imaging, 2020;39(8):2664-2675.
- N. Lessmann, B. van Ginneken, P. de Jong and I. IĆĄgum, "Iterative fully convolutional neural networks for automatic vertebra segmentation and identification", Medical Image Analysis, 2019;53:142-155.
- G. Humpire Mamani, A. Setio, B. van Ginneken and C. Jacobs, "Efficient organ localization using multi-label convolutional neural networks in thorax-abdomen CT scans", Physics in Medicine and Biology, 2018;63(8):085003.
- G. Humpire Mamani, J. Bukala, E. Scholten, M. Prokop, B. van Ginneken and C. Jacobs, "Fully Automatic Volume Measurement of the Spleen at CT Using Deep Learning", Radiology: Artificial Intelligence, 2020;2(4):e190102.
- H. Altun, G. Chlebus, C. Jacobs, H. Meine, B. van Ginneken and H. Hahn, "Feasibility of End-To-End Trainable Two-Stage U-Net for Detection of Axillary Lymph Nodes in Contrast-Enhanced CT Based Scans on Sparse Annotations", Medical Imaging, 2020:113141C.
- G. Chlebus, A. Schenk, J. Moltz, B. van Ginneken, H. Hahn and H. Meine, "Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing", Scientific Reports, 2018;8(1):15497.